

新能源汽车能耗与排放全生命周期分析 Life cycle energy and emissions for electric vehicles

宋凌珺 Lingjun Song 北京航空航天大学 Beihang University 2015-11-20

http:www.buaa.edu.cn

中美电动汽车国际合作项目:

面向中美清洁能源合作的电动汽车前沿技术研究 Collaboration on Cutting-Edge Technology Development of Electric Vehicle

电动公交车无线充电和有线充电的生命周期分析

Life Cycle Assessment of Plug-in and Wireless Charging for Electric Buses

Introduction of Wireless Charging

Solutions for Plug-in Electric Vehicles

On-board Wireless Charger

Off-board Wireless Charger

End of bus route Charging station Charging station Electric Bus equipped with wireless charger **Charging station Charging station** Start of bus route

Bus System Simulation

Bus System Summary

21 routes with 67 Buses = 67 batteries = 67 on-board WCs 844 bus stops, 352 off-board WCs

Details

Table 1. Routes Details

	Blue	Red	Green
How many routes	13	4	4
Miles/loop	10	16	10
Stops/loop	42	64	42
Loops/weekday	14	10	14
Loops/Sat or Sun	7	5	7
Hour/loop	1	1.5	1
Buses/route	3	4	3
Suburb: stops (2-direction)	28	32	28
Suburb: off-WCs (2-direction)	8	10	8
Suburb: time of charging (hour)	0.005	0.005	0.005

Table 2. Downtown Details

	Ann Arbor	Ypsilanti
Number of bus stops	160	80
Number of off-WCs	80	40
Time of charging (hour)	0.01	0.01

Table 3. Transit Centers Details

Transit Ctrs	BTC	CCTC	Hospital	Union	YTC
Number of off-WCs	10	4	4	2	6
Time of charging (hour)	0.08	0.01	0.01	0.01	0.08

Life Cycle Assessment

	Plug-in Charging Sy	ystem	Wireless Charging	System
Chargers	Plug-in Chargers		On-board Charge	ers
Chargers	J J		Off-board Charge	ers
Batteries	Batteries (larger)		Batteries (smaller)	
Electricity	Electricity (more)		Electricity (less)	

Assumption:

- manufacturing of plug-in and wireless charging bus shell is the same.
- Time horizon: 12 years (= life of a bus)

Chargers

Life Cycle Impact (GWP 100a) of Chargers

Assumptions:

Chargers can last twice as long as the bus (24 years).

Batteries

Lightweighting Correlation vehicle mass ~ fuel consumption

Sedan:

10% vehicle mass reduction

ICEV: fuel reduction of 6-8%

EV: fuel reduction of 4-7% (for many EV models)

Source: Hyung Chul Kim, Ford Motor Co.

Bus:

10% vehicle mass reduction

Conventional Bus: fuel reduction of 6.24%

(Argonne National Lab: Autonomie Model)

Pure Electric Bus: fuel reduction of 5%

(assumption for the baseline model)

Batteries

Assumptions:

- 1. For both plug-in charging and wireless charging, there is 1 replacement of battery during 12 years.
- 2. For wireless charging battery, frequent charging won't affect the life of battery very much.

Electricity

Electricity

Total Life Cycle Impacts

Saves 4,299 tons of GHG emission 65,858 GJ of Energy over 12 years

中国电动卡车技术现状与生命周期分析 Electric Truck Technology Status and Life Cycle Assessment in China

Current products, technology & key players

NEV development (Fleet in the stock)

- Trom 2009 to 2014, the NEV fleet doubled per year, more than 190 thousand in the end of 2014.
- The passenger cars accounted for 66%, buses 30%, truck & special vehicles 4%.
- In 2014, 100k NEVs were produced, in which, passenger car 69%, Buses 27%, truck & special vehicle 4%

Current products, technology & key players

EV truck & Special Electric Vehicles

- □ In 2014,the production of EV truck and special electric vehicle was 1357
- EV truck (Load mass > 6000kg)
 was only 34, just a small part.
 HD EV truck (Load mass > 1400kg)
 was 0.

Electric Truck, (wt. 5625kg)

Electric Sweepers, (wt. 7495kg)

Life cycle analysis

Electric Truck

Diesel Truck

	Electric Truck	Diesel Truck
Model	CDW5070XXYH1PEV	CDW5070XXYHA1A4
Weight with full equipments (kg)	3900	3360
Load mass (kg)	6630	7355
Maximum speed (kg/h)	80	90
L×W×H	5995×1980×2900	5980,6180×2200,2110,2010×2700,2850
Power battery type	Lithium iron phosphate storage battery	
Fuel consumption	54kwh/100km	15.2L/100km

谢谢! Thank you!

